
Bachelor-Thesis
Media and Communication Informatics

Evaluation of map matching approaches
for vehicle trajectories on incomplete or

incorrect street network data

Jonas Dominik Müller
Matriculation No.: 765428

First examiner: Prof. Dr. Benjamin Himpel

Second examiner: Prof. Dr. rer. nat. Uwe Kloos

Project supervisor: Timofey Khokhlovskiy

Submission date: 30.06.2022

Abstract:

A crucial step of transforming raw vehicle location measurements into usable data for
many software systems is map matching, a process which combines them with knowl-
edge of the street network to infer the traveled route. Since errors in street network data
are common enough to be an issue for this process, several approaches for extending
existing map matching algorithms have been proposed to handle them robustly.

This work presents how a selection of these proposals can be implemented into an ex-
isting commercial software system, taking the specific requirements of the use case at
hand into account. The developed prototypes are evaluated using state of the art met-
rics and ground truth collection methods. A detailed comparison is then made between
the prototype results and a standard Hidden Markov Model map matching implementa-
tion and the results critically evaluated.

Zusammenfassung:

Map matching ist ein wichtiger Schritt für viele Softwaresysteme bei der Verarbeitung
von rohen Positionsmessungen von Fahrzeugen zu nutzbaren Daten. Hierbei werden
bekannte Straßennetzdaten verwendet, um aus den Messungen die wahre Fahrzeugroute
zu schließen. Fehler in diesen Daten kommen jedoch häufig genug vor, dass sie ein Prob-
lem für diesen Prozess darstellen. Daher gibt es bereits mehrere Ansätze, um beste-
hende Map matching Algorithmen zu erweitern und diese Problematik robust zu behan-
deln.

Diese Arbeit stellt vor, wie eine Auswahl solcher Ansätze für ein bestehendes kommerzielles
Softwaresysteme umgesetzt werden können. Hierfür werden die spezifischen Anforderun-
gen des Anwendungsfalls definiert und miteinbezogen. Die entwickelten Prototypen wer-
den mithilfe anerkannter Metriken und Methodiken zur Erhebung von Referenzdaten evaluiert.
Daraufhin werden die Ergebnisse der Prototypen mit einer nicht erweiterten Hidden Markov
Model Map matching Implementierung verglichen und kritisch betrachtet.

Acknowledgements

This Bachelor-Thesis was created as part of the Media and Communication In-
formatics degree programme at Reutlingen University. The goal of the thesis is
to independently solve a relevant problem using scientific methods within a fixed
amount of time.

I want to thank my first examiner, Prof. Dr. Benjamin Himpel, for his suggestions
on how to define the off-road classification problem.
Additionally, I want to thank both of my examiners for their support concerning
this thesis.

For their valuable feedback on my concepts and ideas, I want to thank the product
and development team at vialytics.
For helping me choose the final topic, as well as support on the company-side of
the thesis, I want to thank Timofey Khokhlovskiy.

This thesis was written in cooperation with vialytics GmbH between March 1st
2022 and June 30th 2022.

Contents

List of Figures VII

List of Tables IX

1 Introduction 1

1.1 Context . 1
1.2 Motivation . 3
1.3 Research questions . 4

2 Foundations 5

2.1 Vehicle location measurement . 5
2.2 Street networks . 6
2.3 Street network inference . 8
2.4 Map matching . 8

2.4.1 Global geometric distance . 10
2.4.2 Hidden Markov Models (HMMs) 11
2.4.3 Shortest path . 12

3 Related Work 15

3.1 Comparing map matching algorithms 15
3.2 Map matching with missing street network data 17

3.2.1 Using location measurements as match candidates 17
3.2.2 Replacing missing roads with simplified GPS geometry . . . 18
3.2.3 Combining multiple models 19

4 State analysis 21

5 Requirements analysis 25

5.1 Prototype implementation . 25
5.2 Data structure . 26
5.3 Development process . 27
5.4 Location measurements . 28
5.5 Street network data . 29
5.6 Test set creation . 30
5.7 Result evaluation . 31

6 Concept 33

6.1 Evaluation . 33
6.1.1 Metrics . 34
6.1.2 Evaluation process . 35

6.2 Map matching service . 36
6.2.1 Base application . 37
6.2.2 Off-road map matching . 38

7 Implementation 41

7.1 Evaluation . 41
7.1.1 Evaluation process . 42
7.1.2 Discrete Fréchet distance . 43

7.2 Prototypes . 43
7.2.1 Core map matching implementation 44
7.2.2 Off-road candidate scoring 45
7.2.3 Kalman filter . 46

8 Results 49

8.1 Test set characteristics . 49
8.2 Prototype results . 51

9 Discussion 55

10 Conclusion 57

Acronyms 59

Glossary 61

References 62

Attachments 67

A.1 Evaluation process diagram . 67
A.2 Discrete Fréchet distance pseudocode 68
A.3 Additional test set visualizations . 69
A.4 Additional prototype result visualizations 71
A.5 Evaluation application screenshots 72
A.6 Core map matching pseudocode . 75
A.7 Kalman filter pseudocode . 77

List of Figures

1.1 Web-based management system of vialytics. 2
1.2 Missing street example. 3

2.1 Trajectory error ellipse. 6
2.2 Map matching example. 9
2.3 HMM MM visualization. 11

3.1 Standard HMM and sIMM comparison. 20

4.1 Entity-relationship diagram of the inspection entity at vialytics. 21
4.2 Percentage of inspections per category per time frame. 22
4.3 Results of manual review of 26 partially matched inspections. . 23

5.1 Entity-relationship diagram of inspection data at vialytics. . . . 26

6.1 Entity-relationship diagram of map matching data in the con-
text of the map matching (MM) service. 37

6.2 Concept for MM service. 38
6.3 Concept for modular process in MM service. 40

7.1 Ground truth view. 42

8.1 Off-road point percentage. 49
8.2 Reported accuracy compared to per-point difference. 50
8.3 Fréchet distance comparison of trajectory and ground truth. . 51
8.4 Line matching accuracy per inspection (al). 52
8.5 False positives per inspection (FP). 52
8.6 Prototype result discrete Fréchet distance comparisons. 53
8.7 Computational time per point for each implementation (∆tcnp). . 53

A.1 Evaluation process concept. 67
A.2 Number of points per inspection. 69
A.3 Standard deviation of reported accuracy per inspection. . . . 69
A.4 Average measured speed per inspection. 69
A.5 Average point time difference. 70
A.6 Off-road precision on inspections with off-road segments. . . . 71
A.7 Off-road recall on inspections with off-road segments. 71

VII

A.8 Index view . 72
A.9 Visualization view . 73
A.10 Inspection view . 74
A.11 Evaluation view . 74

List of Tables

4.1 Inspection MM categories. 21

5.1 Functional prototype implementation requirements. 25
5.2 Data structure requirements prototypes. 27
5.3 Data structure requirements evaluation. 27
5.4 Development process functional requirements for prototypes. . 28
5.5 Development process functional requirements for evaluation. . 28
5.6 Location measurement functional requirements for evaluation. 29
5.7 Location measurement functional prototype requirements. . . 29
5.8 Test set nonfunctional requirements for evaluation. 30
5.9 Test set creation functional requirements for evaluation. 31
5.10 Result evaluation functional requirements. 32

6.1 MM result metrics. 34
6.2 Off-road classification. 35
6.3 Inspection metrics. 35

7.1 Key web technologies used. 41

IX

1 Introduction

Location data is at the heart of many modern software systems, either as a way
of tracking objects and users, for example in navigation software, or as an im-
portant part of giving meaning to other measurements.
Often, location data is recorded using consumer-grade global positioning sys-
tem (GPS) receivers, such as ones integrated into smartphones. These receivers
suffer from limited accuracy, signal noise, and often perform drastically worse in
unfavorable conditions, such as when being surrounded by tall buildings.
As a result of this, raw location measurements often require additional process-
ing, before being used further in an application.

Map matching is such a processing step, utilizing street network data to infer
the actual route taken by a vehicle on roads. Even though the availability of
such geographical data is wider than ever, errors and gaps in it cannot be ruled
out. This then poses a problem for traditional map matching (MM) approaches,
resulting in incomplete and inaccurate matching results.
This work aims to present, implement, and evaluate a selection of state-of-the-
art proposals to address this issue by extending existing MM implementations.

1.1 Context

This Bachelor-Thesis was written in cooperation with vialytics GmbH. As such,
a core motivation of this effort is the continued improvement of vialytics’ map
matching algorithm for processing collected road condition data.

Vialytics offers customers, usually municipalities and their building yards, a digi-
tal road management system, at the core of which lies automatic road condition
assessment. Currently, this service is offered for local roads and bike lanes. For
this purpose, customers are equipped with a smartphone, which they can mount
to cars or service vehicles in order to record condition data as they drive on the
roads in question. The smartphone is preinstalled with a custom inspection app,
which records an image, timestamp, positional data, and accelerometer data at

1

a regular interval. A batch of these recordings is termed an inspection and con-
tains at most one thousand recordings, termed points, before another has to be
started.
Inspections are then uploaded by the customer, at which point they are pro-
cessed by a pipeline of various steps to filter, clean, anonymize and analyze the
data. As these include multiple machine learning (ML) steps, as well as other
compute-intensive processes, it usually takes up to an hour for an inspection
from upload to the finished result. These results are regularly inspected by qual-
ity assurance employees to ensure their validity despite the wide range of factors
influencing inspections, such as weather condition at time of recording, mount-
ing height of the smartphone and road type. The finished result, alongside all
other uploaded inspections, is then available to the customer in a web-based
management and geographic information system (GIS), an example of which can
be seen in Figure 1.1. This displays an overall grade for the inspected street net-
work, grades for individual streets and individual points, as well as an identifica-
tion of which categories of road damages were detected.

Figure 1.1: The condition view in the web-based management application of an
example customer, showing the results of several inspections as
colored-coded road segments.

Because of the nature of this inspection process, all points should optimally be
mapped onto a road, as they are directly relevant to the condition of a road.
Due to measurement errors discussed in further detail in Section 2.1, the raw
location measurements do not fulfill this requirement by themselves, making MM
a necessary step of the inspection processing pipeline.

2

1.2 Motivation

While unreliable street network data may be an issue for almost all GIS including
vialytics’ product, it is more noticeable for some use cases than others. A miss-
ing connecting road between residential blocks, shown in Figure 1.2, may only
result in a minor miscalculation of travel times for route planning applications,
but represents a major amount of inspection data for vialytics, which cannot be
integrated into the existing road condition map and therefore not shown to the
customer.

Figure 1.2: An example of an inspected street not being in OpenStreetMap (OSM).
The left side shows the OSM base map, contrasted with Google Earth
satellite imagery on the right. Overlaid are the measured vehicle lo-
cation points in red and gray.

Additionally, demand has risen for inspecting cycle tracks as well as unpaved
roads, such as dirt and gravel roads through fields. Both these categories have
proven challenging for the existing MM implementation due to them generally
being more affected by unreliable street network data. In addition to this, cycle
tracks often run alongside regular streets as bike lanes and can have complex
topology, especially in cities and large intersections. This exacerbates issues
with the location measurement of vehicles driving on cycle tracks.

As a result of this, new solutions need to be found to fulfill the existing require-
ments to map matching at vialytics in the context of this increased demand for
inspections on streets with less reliable geographical data.
These solutions should aim to make the existing MM implementation more robust
to these inspections in a testable manner.

3

1.3 Research questions

Based on the context and motivation of this thesis, the following research ques-
tions are posed as the core of the research effort of this thesis:

RQ 1: How effective are extensions of existing map matching approaches for
matching vehicle location data on streets with missing or erroneous street net-
work data?
RQ 1.1: Which evaluation methods can be used to reproducibly compare map
matching algorithms?
RQ 1.2: How can map matching approaches be extended to detect street net-
work errors?
RQ 1.3: Which actions can a map matching algorithm take when detecting a
street network error to produce a better result?

4

2 Foundations

The following chapter will lay the groundwork for the concepts discussed in Chap-
ter 3:
Section 2.1 describes the nature of location measurement and the inherent un-
certainties when using GPS devices. Section 2.2 defines the model used to de-
scribe street network data, which concrete data source will be used for the eval-
uation and which quality issues it may have. Lastly, Section 2.4 will relate the
last two topics to the topic of map matching and highlight several approaches to
solve it.

2.1 Vehicle location measurement

Location measurement can be achieved using a multitude of technologies such
as using cell tower signals, known Wi-Fi hotspots and Bluetooth. These methods
are often used jointly, for example in smartphones, and have advantages and
disadvantages based on the use case and environment. Due to its prevalence in
the field of vehicle tracking, GPS will be the basis for this section. However, the
foundational concepts described here are shared by all of the aforementioned
methods.

When measuring vehicle location, individual measurements are taken at a fixed
or variable interval (sampling rate). In the case of GPS, the location determined
using the time coded signals of at least four satellites is specified as coordinates,
latitude and longitude, in a geographic coordinate system. A time series of these
measurements, or trajectory, of a vehicle can then be represented by a polyline
consisting of these measurements linearly connected.
When taking such measurements using GPS receivers, their accuracy must be
taken into account in addition to the sampling rate when evaluating the quality
of the overall trajectory.
While the sampling rate is generally known, the characteristics of the measure-
ment error of a GPS device can vary. A widely used and effective assumption
however, is that GPS errors are Gaussian [12, 2, 20] and that their horizontal er-
ror distribution is circular [2].

5

As a result of this, GPS accuracy is often stated as a standard deviation σ and is
typically measured to be between 2 and 8 meters [2].

When tracking the route of a moving vehicle on the street network, the uncer-
tainty added by the sampling interval between consecutive measurements can
be visualized as an error ellipse. For determining which roads were actually trav-
eled, one has to consider all streets within this error ellipse [2]. This ellipse,
shown in Figure 2.1, has two sampled positions as focal points and a major axis
of 2a = vt ∗i, where v(t−1) is the measured speed at time t−1 and i is the sampling
interval. This reflects the fact that, with only the knowledge of the speed at t and
assuming no acceleration, the vehicle can travel a distance of vt ∗i. The distance
of the focal points 2c is simply the great circle distance between the two posi-
tions. Therefore, the minor axis 2b can be calculated from the ellipse equation
b2 = a2 − c2.

Figure 2.1: A depiction of a trajectory error ellipse, as defined by [2]. Scales of
ellipse and distances are for illustrative purposes and do not follow
the defined equations.

2.2 Street networks

Modern sources of map data encompass a variety of geographic information,
such as buildings, political borders, and points of interest, however for the pur-
poses of this thesis we will focus on the street network.

Street networks, as discussed in the following sections, are modeled as a set of
polylines, consisting of a sequence of points, which in turn are defined by their

6

latitude and longitude. Both points and polylines can be associated with addi-
tional attributes, such as the road type they represent. Despite most street net-
works not being planar due to overpasses, tunnels, and other elevation changes,
they are often simplified to being two-dimensional for analysis [1]. For purposes
such as map matching, the elevation of polylines and points is only relevant
at intersections. In these cases, the vertical relationship of intersecting lines
can be represented by categorizing them into layers, where the ground-level line
is assigned the layer 0, overpasses are incrementally assigned integers above
(1,2,3...) and tunnels incrementally below (−1,−2,−3...).
The source for the implementation and comparison of map matching approaches
used in this thesis will be the OSM project. OSM is a volunteered geographic
information (VGI) project, meaning its data is not necessarily collected by ex-
perts, but rather by a heterogenous community of contributors. More specifi-
cally, it is a map-based and explicit VGI project, as it aims to collect map data
and contributors explicitly submit data for this purpose, as opposed to implicit
VGI like geographically tagged social media posts [14]. It integrates official map
sources from government authorities 1 and community tools exist for automatic
and manual quality control 2.
Fundamentally however, any source of street network data cannot be assumed
to always be correct and VGI projects such as OSM may have additional issues
compared to authoritative data. These include a lack of top-down quality insur-
ance and knowledge of skill and precision of measurement tools of contributors
[9].
Of the various quality parameters by which geographic information can be mea-
sured, this thesis will focus on the issues a lack of positional accuracy and com-
pleteness can cause for map matching. Here, positional accuracy refers to how
close a mapped point is to a reference point, while completeness is a measure of
what percentage of actual geographic features is included in the map data [9].
As intersections in the previously discussed street network model are defined by
two or more polylines containing the same point, positional accuracy can not
only cause misalignment of individual polylines, but also false identification of
intersections.

1"Contributors - OpenStreetMap Wiki" https://wiki.openstreetmap.org/wiki/Contributors (ac-
cessed 21 June 2022)

2"Quality assurance - OpenStreetMap Wiki" https://wiki.openstreetmap.org/wiki/Quality_assurance
(accessed 21 June 2022)

7

2.3 Street network inference

In the context of street network data and VGI, it is important to mention inference
of streets and intersections. Compared to manually mapping features using GPS
measurements, map inference methods can automatically generate street net-
works for entire cities based on aerial imagery [17].
An example of how this can be achieved is by using a convoluted neural network
(CNN) trained on labelled images, such as SpaceNet training data 3, to perform
segmentation and create a street mask [6]. This mask is then refined and ul-
timately used to extract the graph structure that is commonly used in projects
such as OSM.

However, map inference based on aerial imagery also has accuracy concerns:
Due to limitations in positioning of the aerial vehicle and map projection, im-
ages can be offset from their true position. When looking at global image ser-
vices, such as Google Earth or NASA World Wind, similar quality issues to street
network data collection arise when combining data from different satellites and
aerial image sources. This can result in heterogenous positional accuracies de-
pending on the country, region or even city, due to image stitching, a process
where overlapping images need to be combined into one [7].
A study by Goudarzi and Landry found the distance of their ground truth GPS
points in Montreal to be between 0.13 and 2.7 meters away from their match-
ing points in Google Earth. Additionally, even with accurate imagery, complex
intersections and other street structures with limited visibility remain an issue
for inference algorithms [6].

As such, street network inference based on aerial imagery generally does not
replace GPS mapping, but it is a useful tool for extending and refining street net-
work data in projects such as OSM.

2.4 Map matching

Generally speaking, map matching matches the measured location data with the
known street geometry in order to find the most likely corresponding route on the
road network. The result of this process is often a list of street segments in the
source map data that was traveled [12], but depending on the use case can also
be a polyline of the route [8] or a set of points on the route that best match each
GPS measurement [11]. A basic illustration of a measured trajectory and its map
matched points can be seen in Figure 2.2.

3"Automated Road Network Extraction and Route Travel Time Estimation from Satellite Imagery"
https://spacenet.ai/sn5-challenge/ (accessed 21 June 2022)

8

Figure 2.2: An example of matching GPS measurements (red circles) to on-road
counterparts (green circles).

The most immediate approach to solving the map matching problem, especially
with a high GPS sampling rate, would be to simply find the closest point on a road
for each measured point. This idea, called point-by-point nearest road matching
by Newson and Krumm, quickly results in inaccurate paths because of the inher-
ent noise in commercial GPS receiver measurements [12]. Even errors on the
scale of 5 to 10 meters are enough to cause matches on entirely different roads
for measurements within seconds of each other. This problem is worsened by
unfavorable GPS conditions and areas with dense road networks, where high-
ways and roads can often be located in close proximity and even overlap without
having actual intersections.
A key idea to handling these complications more robustly is the consideration of
context when matching a location measurement, meaning taking previous and
future measurements into account. Whether only previous measurements or the
entire route trajectory is used for map matching determines if and algorithm is
categorized as on-line map matching in the former, or off-line map matching in
the latter case.

This thesis will focus on the off-line map matching category, of which three ex-
amples will be highlighted in the following sections with regards to the use case
of map matching for vehicle trajectories:

i. A geometric solution, using Fréchet distance as a measure to find matching
paths.

ii. A solution based on Hidden Markov Models (HMMs), taking a more proba-
bilistic approach.

iii. A solution based on using the concept of shortest path.

9

2.4.1 Global geometric distance

While the previously discussed nearest road matching might be considered a
basic geometric approach for map matching, much more sophisticated solutions
have been proposed by matching geometries.

One commonly cited approach was developed by Brakatsoulas et al. with the
goal of developing a map matching algorithm that produces accurate travel
times, rather than accurate individual matches. As such, they focus on match-
ing the entire vehicle trajectory at once to possible route curves on the street
network. While their paper also describes a greedy, local algorithm, we will be
focusing on the two global, and therefore off-line, MM algorithms. Said algo-
rithms compare candidate curves on the street network, with the measured tra-
jectory using the Fréchet distance and weak Fréchet distance respectively [2].
The curves in this context refer to polylines, consisting of a finite number of dis-
crete points. A frequently used intuitive definition for the Fréchet distance be-
tween two curves can be described like so:
Suppose a person is walking his dog, the person is walking on one finite curved
path and the dog on another. Both are allowed to control their speed in order to
keep the leash short, but they are not allowed to go backwards. Then the Fréchet
distance of the curves is the minimal length of leash that is necessary for both
to walk their curves.

The formal definition for two curves f ,g : [0,1]→R
2 is as follows:

δF(f ,g) := inf
α,β: [0,1]→[0,1]

max
t∈[0,1]

∥f (α(t))− g(β(t))∥ (2.1)

Where, in the case of the regular Fréchet distance, α and β range over contin-
uous and non-decreasing reparameterizations with α(0) = β(0) = 0 and α(1) =
β(1) = 1 only. For the weak Fréchet distance the same conditions apply, except
the reparameterizations are allowed to be decreasing [2]. In the terms of the
intuitive definition this means allowing the person and dog to backtrack in order
to keep the leash short.

Compared to other distance measures between curves, such as the Hausdorff
distance, this method takes the continuity of the curves into account. Whether
the start of a vehicle trajectory is close to the end of a matched route is not
nearly as useful for making MM decisions as whether the curves are continu-
ously close. As such, Brakatsoulas et al. claim the Fréchet distance is a good fit
as a metric for MM.
While the weak Fréchet distance can lead to vastly different results for specific,
theoretical curve configurations, in the experiments of Brakatsoulas et al., they

10

produced identical results for their real-world test set of the Athenian street net-
work and their recorded GPS trajectories. However, as weak Fréchet distance can
be calculated using a less time complex algorithm (O(mn log mn) compared to
O(mn log2 mn) [2]) it may be more efficient for MM applications.

When evaluating their results, Brakatsoulas et al. choose not to compare against
a ground truth, but instead once again use the Fréchet distance of the matched
route and the vehicle trajectory to compare their algorithms with each other. Ad-
ditionally, the average Fréchet distance is compared, as by its nature of taking
the maximum of a set of distances, the Fréchet distance is sensitive to outliers.
This sensitivity is also brought up by Newson and Krumm as a weakness of geo-
metrical MM approaches.

2.4.2 Hidden Markov Models (HMMs)

Figure 2.3: A visualization of the HMM graph for the map matching problem,
where pe is the emission probability and pt the transition probability.

HMMs aim to describe a system with evolving states, which cannot be directly
observed, called hidden states. Instead, observations are indirectly related to
hidden states via probabilistic connections. The most likely path of hidden states
that lead to the given observations can then be calculated using the Viterbi al-
gorithm.
An HMM is often imagined as a graph with the states as nodes, connected by the
probabilities as edges (Figure 2.3). At the core of evaluating the likeliness of a
possible hidden state in the HMM model are emission and transition probabili-
ties.

• Emission probability reflects the likeliness of an observation being caused,
or emitted, by a hidden state.

11

• Transition probability describes the likeliness of a hidden state to transition
to a different hidden state.

In the case of map matching vehicle trajectories, the true car trajectory can be
understood as the unobservable hidden states and the series of GPS and other
location measurements as the observations. This modeling of the MM problem
allows a consideration of all possible paths through the street network given a
set of possible hidden states or match candidates [12].
The selection of match candidate is left open in the HMM approach, but the com-
monly cited algorithm of Newson and Krumm places several restrictions on the
process, such as only selecting candidates less than two hundred meters away
from the GPS measurement and ignoring candidates with no reasonable routes
from the measurement.
In the context of map matching, the emission probability of a match candidate
corresponds to how likely it would be for the recorded GPS measurement to have
occurred, had the vehicle been at the position of a match candidate. How likely
it is for a vehicle to have moved from a previous position on the street network to
a given next position is modeled by the transition probability. Both probabilities
can be calculated in several different ways for the map matching problem and
many different metrics have been proposed [18]. Similarly, whether the probabil-
ity of consecutive matches should be multiplied or summed can change based
on the implementation.
As an example for emission probabilities, Newson and Krumm utilize the great
circle distance between a match candidate and a given observation, weighted by
a probability density function based on the measured standard GPS error.
For transition probabilities, Newson and Krumm determine that, in general, the
great circle distance between sequential observed vehicle positions and the short-
est path distance on the road network between corresponding match candidates
should be equal. Therefore, another probability density function can be formu-
lated weighing the difference of these distances based on an experimentally
measured expected distance.

Once match candidates have been determined and these probabilities calcu-
lated for each of them, the most likely path of matches and therefore the vehi-
cles’ route on the street network can be retrieved using the Viterbi algorithm.

2.4.3 Shortest path

Because of its proven usefulness and adaptability, HMMs have become a popular
way of modeling the map matching problem. This development is being ques-
tioned by Srivatsa et al., who first argue that the basic assumption behind using
HMMs for map matching may be wrong and present a different solution based on

12

a shortest path approach.
Using GPS data from taxicabs in Shanghai, San Francisco, and Stockholm they
calculate an error metric with respect to how much the data differs from ex-
pected Markovian behavior [15]. The resulting findings show a deviation from
this expected behavior:
Especially when the taxicab was occupied with a passenger, the movement more
closely followed the shortest path between its current location and the destina-
tion. Since HMM-based algorithms do not necessarily optimize for the shortest
overall route and instead choose whichever match candidate might be the most
likely based on the defined probabilities, they can predict overly long and com-
plicated routes for datasets with low sampling rates.

Srivatsa et al. propose a solution which instead selects k shortest paths between
trip endpoints and picks the most likely by summing the distance from each ob-
servation to a path and selecting the path with the smallest total. They test
their algorithm on the taxicab datasets and compare it to a standard HMM map
matching implementation, resulting in a 20% improvement in accuracy and a
significant improvement in performance over it [15]. Notably, the higher k was
set, the less error was measured and despite this introducing a longer compute
time, a k of eight still resulted in a much shorter runtime and more accurate
results than the HMM approach.

However, it is important to emphasize the nature of the used dataset:
Taxicab movements may be more likely to follow a shortest-path than drivers
in other use cases. Their drivers have a clear incentive and the experience to
navigate optimally between start- and endpoints, which can also be clearly de-
termined and labelled for taxicab trips.

13

3 Related Work

In this chapter, we will explore the concepts relevant to the research questions
of this thesis and which build upon the topics discussed in Chapter 1.

Firstly, to evaluate different map matching approaches, suitable metrics need to
be found by which to measure and compare them, which is discussed in Section
3.1. Secondly, state of the art approaches for map matching with missing map
data are presented in Section 3.2.

3.1 Comparing map matching algorithms

Evaluating the quality of map matching algorithm results is a complex issue for
multiple reasons. Algorithms can have substantially different requirements they
aim to fulfill, both in what data they are designed to take in and what qualities
the result is supposed to have.

On the input side, while GPS accuracy can generally be considered to be within
similar ranges, sampling rates depend entirely on given use cases. Algorithms
designed for intervals of 10 seconds often choose different matching methods
from algorithms designed for intervals in the minutes and often do not perform
well on significantly lower or higher sampling rates [19].
On the output side, most MM approaches aim to generate a more accurate rep-
resentation of the vehicle trajectory, but by what this is measured, differs. Some
aim to create a route that most accurately represents the travel times on specific
street segments [2, 12], meaning the sequence of street segments traveled and
their entry and exit times. Others think of MM more as ’snapping’ all individual
GPS measurements to streets [11, 13].
As such, multiple different metrics are chosen to compare the results of differ-
ent algorithms, some focusing on the overall matched route, like the total dif-
ference in length between matched route and trajectory [13] or Fréchet distance
[2], and others more on individual measurements, such as the average distance
between GPS points and the matched route. Due to its comparatively simple
implementation and computational complexity, the discrete Fréchet distance is

15

also a good fit for calculating a similarity measure between polylines based on
location measurements and results in a good approximation of the continuous
Fréchet distance [5].

In addition to comparing MM results with each other, some researchers estab-
lish a source of ground truth, against which the MM prediction is compared [18,
12, 3]. This however, raises the question of how to define and collect ground
truth for map matching problems, as the ’actual’ trajectory of the vehicle can
never be perfectly known. One approach is to collect both a high-quality and
low-quality dataset of a vehicle trajectory [13], with quality in this case usually
referring to sampling rate and location accuracy. This can be achieved by either
using measurement devices with different accuracies, or by artificially adding
noise to a collected dataset. The latter option having the benefit of requiring
little to no manual work and therefore allowing larger test sets. In either case,
the low-quality data is used as input data for the MM algorithm and the result is
compared to the high-quality data, taking the role of ground truth.
While useful, this methodology may not be sufficient for use cases aiming for a
high-quality at high sampling rates, as the ground truth in these cases is still a
potentially noisy GPS trace. The accuracy of these traces can be kept consistent
by pre-planning a route and using that to verify the measurements [19], but this
introduces additional manual work and may result in less natural trajectories for
a given use case.
A different approach is manual map matching [10, 13, 12]. Using the assumption
that humans can map a set of GPS points to streets with a high degree of accu-
racy, given a high enough sampling rate and visualization aids [10]. Naturally,
collecting ground truth using manual matching is costly, but good tooling and
aids such as already providing the human matchers with a machine-matched
route that they can use as a baseline, can increase the speed and efficiency of
this method.

No matter how it is collected, ground truth data allows the use of well-known
evaluation methods such as precision and recall to evaluate the performance
when mapping measurements to specific road segments. One approach used by
Wei et al. and Chao et al. compares the length of road segments shared by the
ground truth data and the matched route [19]:

recalll =
||T ruth∩M ||
||T ruth||

, precisionl =
||T ruth∩M ||
||M ||

(3.1)

Where T ruth is the ground truth set of road segments, M is the set of road seg-
ments in the matched route and || ∗ || sums the length of the segments of a set.

Circling back to research question 1.3: Given that we will be evaluating algo-
rithms using the same inputs and outputs, a method of collecting ground truth
data can be chosen and applied to create a test set. This can then be used to

16

calculate metrics which allow for comparisons between algorithms based on the
similarity of their generated routes compared to the measured trajectory and
the ground truth route.

3.2 Map matching with missing street network data

As discussed in Chapter 2.4, there are a variety of map matching approaches,
but all mentioned examples implicitly assume the given street network data to
be complete and correct. A key idea to tackle the issue of incomplete street
network data is therefore to loosen the assumption that the map matched route
has to be entirely contained in it.

In this chapter, we examine how state of the art approaches extend existing MM
approaches based on this idea and how they decide when to consider such off-
road matches.
All the here mentioned approaches use HMM map matching as their basis. This
is not the result of an intentional selection for this thesis and instead a reflection
of the available literature.

3.2.1 Using location measurements as match candidates

Haunert and Budig extend an HMM-based map matching algorithm by adding an
additional off-road match candidate to each GPS point in the trajectory [8]. This
off-road candidate has the same position as the GPS point itself and allows the
algorithm to use the measured positions for the map matched path when on-
road candidates are unlikely.
The crucial issue to solve with adding off-road candidates is calculating their
probabilities for the HMM. Using the standard emission probability measure of
great circle distance between match candidate and GPS point is no longer useful,
as both are in the same location. Because of their nature, there is also no route
on the street network leading from a preceding or following match candidate to
a given off-road candidate, so the shortest path distance cannot be used for the
transition probability.
While Haunert and Budig do not describe an adjustment to the calculation of
emission probabilities for off-road candidates, they do introduce a method with
several adjustable parameters to calculate the cost of a transition:

• Off-road path sections have a separate cost factor per unit traveled.

17

• If transitioning between two off-road candidates, the path length is the
great circle distance between the two locations.

• If transitioning between an off-road candidate to an on-road candidate, or
vice-versa, the path length is the combination of the on- and off-road seg-
ments connecting the two with minimum cost.

In addition to this, a factor φ is conditionally applied to the probability of tran-
sitions between on-road candidates while a different factor ψ is applied when
transitioning from an off-road to an on-road candidate. Both factors so φ > ψ
is true, reflecting the assumption that most trajectories will be contained in the
given street network data.

While the evaluation of this approach is limited to a small number of experiments
and non-systematic evaluation of the quality of the matched route, it does show
results which would not be possible with a regular MM approach. Several parts of
their tested route are on streets not present in the used OSM dataset, meaning
the trajectory could not have been matched as a whole without adding off-road
candidates. Additionally, Haunert and Budig show that the introduced parame-
ters affecting the likeliness of choosing off-road candidates enable a degree of
adjustment depending on the use case.
A drawback of this method is that the resulting matched route in part includes
raw and potentially noisy GPS data. The approach is also limited in the sense
that it describes no method by which future MM processes could make use of the
missing streets recognized in a previous process.

3.2.2 Replacing missing roads with simplified GPS geometry

In a similar approach to extending HMM map matching, Torre et al. propose view-
ing the problem of map matching with missing road data as a hybrid between
map matching and map building [16]. Instead of always considering the GPS po-
sition of observations as match candidate, their algorithm only uses GPS points
when it detects a missing segment. This is achieved by setting a fixed cutoff dis-
tance, where if there are no candidates within a radius of d around the current
observation, it is considered to be an error in the street network data and the
algorithm will start adding new road geometry:
First, the start of the new street segment to be added is selected by finding the
last recorded observation which was within a standard deviation s of the GPS
error away from any on-road candidate. In a similar fashion, the end of the seg-
ment is picked by finding the first following observation within s of an on-road
candidate. This ensures the street segment will be connected to the existing

18

street network. Once the endpoints are determined, the street segment is con-
structed by connecting the GPS measurements in between in sequence. As this
segments’ polyline then consists of raw measurements, Torre et al. suggest sim-
plifying the segment geometry before adding it to the street dataset, but do not
mention a concrete method to accomplish this. Once the new geometry has been
added, the algorithm starts over at the first observation where the new segment
would contain match candidates and proceeds.

Torre et al. evaluate their algorithm using 128 GPS tracks of bike-focused VGI
street network data for Minneapolis. To evaluate the street segment reconstruc-
tion, the matching algorithm is run once with the whole street network dataset.
Then random segments of the dataset which appeared in the matched path are
removed and the algorithm is run again. As such, the removed street segments
serve as a kind of ground truth against which the results of the second run are
compared, as the algorithm should optimally recreate the missing segments.
Only a limited amount of evaluation is shown using this comparison and only the
quantity of the generated street segments is considered, not the quality.

Despite the shortcomings of its evaluation, the approach developed by Torre
et al. is a relevant proof of concept of how to view missing road network data
not just as individual points, but as geometries with connections to the existing
street networks. This allows for a more complex analysis of the problem and
brings up the application of methods such as geometry simplification to reduce
measurement noise.
Additionally, it demonstrates how map matching results can be used to enhance
the existing street network dataset.

3.2.3 Combining multiple models

In an effort to refine previous efforts like the ones in sections 3.2.1 and 3.2.2, Mur-
phy et al. propose applying a semi-interacting multiple model filter (sIMM) con-
sisting of both an on-road and an off-road map matching model [11]. Their solu-
tion is formulated in a generalized way, allowing combination of any two models
suitable for map matching and free-space filtering, but for implementation and
testing purposes they chose an HMM map matching algorithm solution as the
on-road and a closed-form Kalman filter as the off-road model. As they propose
a semi-interacting model for performance reasons, only the Kalman filter can
influence the HMM and not vice versa.

In practice, this means the output of the Kalman filter for a given observation can
be used as a match candidate in the map matching process. This bears some
similarities to the previously mentioned approaches, with one core difference:

19

Figure 3.1: Standard HMM (left) and sIMM implementation results (right) in a sit-
uation with one road wrongly marked as non-routable. (Example from
[11]).

Instead of directly using the raw GPS measurements (3.2.1) or applying a sim-
plification algorithm to their trajectory (3.2.2), this approach continuously uses
the off-road model to track the vehicle trajectory and generate predictions to be
used as off-road candidates. Similar to the method of Haunert and Budig the
transition probability calculations proposed by Newson and Krumm are adjusted
to function with off-road candidates.

Murphy et al. do not provide any quantitative test results for their implementa-
tion. Instead, they include a selection of pictures comparing the MM results of
the sIMM with the output of a regular HMM implementation working with an OSM
dataset. Figure 3.1 shows one of these examples in a simplified manner: In this
case, the standalone HMM implementation cannot compute a trajectory over the
segment wrongly marked non-routable, as it is designed with the assumption
that the given street network data is entirely correct, resulting in it matching to
the wrong route. On the other hand, the sIMM implementation matches using its
on-road model up until the missing segment and then switches to the now more
likely off-road model trajectory, before switching back to on-road matches once
close enough to a routable road segment.

In a different example, they apply the algorithm to a large set of driver loca-
tion data collected from a ride-for-hire app, tracking the number of times and
location, where the output of the off-road model was used. Using this analysis
approach, Murphy et al. claim to have identified several hotspots with a high-
density of off-road traces, pointing towards errors in the used OSM street net-
work data.
This, once again, highlights how map matching and map-building are related, as
well as how an analysis of multiple trajectories on the same roads can result in
clearer indication of errors.

20

4 State analysis

To get an overview of MM issues at vialytics, several database queries were made
to count the number of inspections in specific MM categories. This was done

Figure 4.1: Entity-relationship diagram of the inspection entity at vialytics.

using the isMapmatched and mapMatchError attributes of Inspection entities
(Figure 4.1):

• isMapmatched is true if the MM process produced any matches.

• mapMatchError is true if the MM process encountered issues or could not
find a match for any point.

Which are used to build the inspection categories listed in Table 4.1.

Category isMapmatched mapMatchError

Fully matched true false

Partially matched true true

MM Failed false true

Not processed false false

Table 4.1: Inspection MM categories.

The Not processed category refers to inspections that exist in the system but
have not yet passed the steps before map matching in the pipeline and will not
be discussed further.

21

In total, 9423 inspections were selected by their creation date in the database
from the following three 30-day periods (ISO 8601 dates):

• From 2021-12-25 to 2022-01-24.

• From 2022-01-25 to 2022-02-24.

• From 2022-02-25 to 2022-03-27.

The resulting proportions of inspections in each category can be seen in Figure
4.2 and show that seven hundred, or around 7 %, of the inspections could not
be map matched without issues. While there are some failure reasons which do
not need quality assurance (QA) involvement, such as the inspection not having
the minimum number of points, this is a significant number of inspections which
need to be manually reviewed.

Figure 4.2: Percentage of inspections per category per time frame.

As these results merited further investigation, the next step taken was to manu-
ally review a smaller set of inspections with MM errors in order to categorize the
failure reasons. In total, 328 inspections were selected by their creation date in
the database from the three-day period of 2022-03-26 to 2022-03-29. Of those,
26 were partially matched and zero had failed map matching. These 26 inspec-
tions were then divided into the following categories:

• way filtered out : A matching OSM street can be identified, but it is of a type
which vialytics did not store.

22

• street not in OSM : A matching street can be identified on satellite imagery,
but it is not in OSM.

• out of bound : The inspection was partly or completely conducted outside
the predetermined customer bounds.

• inaccurate way : A matching street can be identified on satellite imagery,
but it is inaccurately mapped in OSM.

• outside search radius : A matching street can be identified, but it is further
away from the measured point than the 30 m search radius.

The results in Figure 4.3 show that street network data completeness issues,
whether caused by a lack of data in OSM or lack of OSM data saved in the vialyt-
ics database, was the main source of errors in the reviewed set. This is true for
both how often it was the main error reason as well as how many points could not
be matched for each of their occurrences. While the out of bounds error affected
the most points per occurrence, they were due to a now deprecated additional
geo-fence filter which was applied in a previous pipeline step and is not relevant
for the purposes of this thesis.
Issues of positional accuracy, captured by the inaccurate way category, were a
comparably minor issue alongside overly restrictive search radii for matches.

(a) Inspections categorized by main MM error
reason

(b) Number of points affected per error
occurrence

Figure 4.3: Results of manual review of 26 partially matched inspections.

While this analysis was limited in scope and depth, it gave enough confidence
in the core motivation of this thesis to justify going ahead with the exploration
of map matching approaches which are designed to recognize incomplete street
network data.

23

5 Requirements analysis

Having laid out the context and foundations for this thesis, we will now describe
the requirements which are relevant for the development of both the evaluation
and the map matching prototypes.

As these two topics encompass different responsibilities, they will be considered
as two separate, but related software systems.

5.1 Prototype implementation

To limit the scope of the implementation and variables needing to be considered
in evaluation, all algorithm implementations will be embedded in the same core
HMM map matching application. This application, itself based on the existing MM
module at vialytics, will contain logic for querying all necessary data, including
on-road match candidates, an extensible HMM implementation and functions for
tracking and calculating evaluation metrics.
Prototypes, implementing approaches for taking off-road candidates into ac-
count will then be built on top of this foundation. The prototype modules are
allowed to differ in how they select off-road candidates, how they score candi-
dates and how they handle breaks in the HMM, such as when no candidate could
be found within a certain range. Table 5.1 lists these requirements formally.

ID Requirement

P.F.1 The prototypes must be implemented as modules of the same base MM
application.

P.F.2 The prototypes must include off-road candidates in their model.

P.F.3 The base MM application must be responsible for all on-road HMM MM
functions.

P.F.4 The base MM application must allow off-road candidate selection, scor-
ing and HMM breaks to be changed by the prototype modules.

Table 5.1: Functional prototype implementation requirements.

25

5.2 Data structure

An important consideration when developing a map matching implementation is
how the necessary input data can be accessed and transformed into a workable
format for the MM algorithm. Due to factors outside the scope of this thesis, the
vialytics system generally stores customer data, which is actively being worked
on in a MongoDB, while largely read-only customer data is stored in a separate
PostgreSQL database. An entity-relationship depicting the simplified data struc-
ture of inspection data at vialytics can be seen in Figure 5.1.

Figure 5.1: Entity-relationship diagram of inspection data at vialytics.

This data separation is relevant when map matching an inspection, as the pro-
cess requires data to be fetched and related across both databases.
Match candidates for each observation can be queried using functions provided
by PostGIS 1, a PostgresDB extension which allows for geographic queries. How-
ever, to select match candidates using the correct street network data, the cus-
tomer to which the Inspection entity belongs must first be queried to then query
candidates from PlanetOsmLines of the appropriate schema in the PostgresDB.
Due to this chain of queries across different databases, the computational com-
plexity of the match candidates geographic query and the transmission delays
associated with each query, especially when running them locally from a devel-
opment machine while prototyping, caching the required data for the purposes
of the thesis is preferable. Keeping a local copy of all necessary data also en-
sures that no potential changes to the remote data during evaluation can affect
the results.

To fit into the existing inspection pipeline, the output of all MM prototypes must

1"About PostGIS | PostGIS" https://postgis.net/ (accessed 21 June 2022)

26

be a set of Match entities which map exactly one point to one PlanetOsmLine
entity.

Thus, we define functional requirements for the prototypes listed in Table 5.2 and
for the evaluation framework listed in Table 5.3.

ID Requirement

P.F.5 The base MM application must be able to collect and use all relevant MM
data from the vialytics databases.

P.F.6 The base MM application and therefore all prototypes must produce re-
sults in the form of a list of Match entities.

Table 5.2: Data structure and access functional requirements for prototypes.

ID Requirement

E.F.1 The system must be able to store all relevant MM data locally.

E.F.2 The system must be able to run all prototypes using only local data.

Table 5.3: Data structure and access functional requirements for evaluation.

5.3 Development process

As the focus of this thesis is to prototype and evaluate, being able to iterate
quickly upon implementations and having access to debug information as needed
is key. However, the previously existing map matching implementation and QA
tools at vialytics were developed as modules of existing monolithic services.
While this allowed the reuse of database connection logic, it poses various dif-
ficulties for prototyping and the development team decided that creating a sep-
arate service with the sole responsibility of map matching is preferred (Table
5.4).

Alongside this map matching service, a separate frontend project should be cre-
ated for the purposes of evaluating the prototypes, as this would be outside of
the scope of the existing QA tools (Table 5.5).

27

ID Requirement

P.F.7 The system must be implemented as a service whose sole responsibility
is map matching and to provide data for evaluation.

Table 5.4: Development process functional requirements for prototypes.

ID Requirement

E.F.3 The system must be implemented as a service whose sole responsibility
is evaluating the map matching prototypes.

Table 5.5: Development process functional requirements for evaluation.

5.4 Location measurements

The location data which needs to be map matched is recorded by a smartphone
(iPhone 12 or newer) mounted to the windshield of the inspection vehicle. To en-
sure image stability and safety, drivers are instructed to drive between 15 and 60
km/h and the smartphone app aims to store an image alongside location data
every three meters. Individual measurements are stored as point entities in the
database, as can be seen in Figure 5.1.
As the speed of the vehicle is not constant and may be outside of the recom-
mended range during turns, the sampling rate of points varies. However, this
does not mean the location data is queried at this rate. Instead, the app is no-
tified by the operating system when a location change event is triggered, which
can happen at a different varying rate of every 1 to 5 seconds, depending on
GPS signal strength and operating system power management logic. In order to
still get a location for each captured image, their position, speed, and accuracy
is linearly interpolated in the app between consecutive location measurements
using the timestamps of when they were taken.
In addition to GPS, the smartphones make use of cell signal, WiFi and Bluetooth in
order to determine device location, speed and an estimate of the location accu-
racy given in a radius of an uncertainty circle around the given measurement.

28

Taking this variability into account, we define the functional requirements for the
evaluation listed in Table 5.6.

ID Requirement

E.F.4 The system must store accuracy and speed for inspections.

E.F.5 The system must calculate and display accuracy and speed distribution
for inspections.

Table 5.6: Location measurement functional requirements for evaluation.

And we define the functional requirements for the prototype implementations in
Table 5.7.

ID Requirement.

P.F.8 The system must not expect a constant sampling rate.

P.F.9 The system must be able to take variable accuracy into account.

Table 5.7: Location measurement functional prototype requirements.

5.5 Street network data

As mentioned before, the relevant street network data source used for map match-
ing is OpenStreetMap.
Data for supported countries is downloaded on a weekly basis from an OSM
server in order to be filtered and stored in a dedicated database for further use.
During the filter step, only features with a specific type are kept. This is done
using the highway attribute which all OSM line entities have and classifies them
as one of several street types, such as footway, service, or cycleway. The filter
step is taken to limit the amount of storage needed, as the OSM source file con-
tains more geographic information than needed, such as buildings and land use
information.

One of the first steps when a customer uploads a new inspection, is a process
which fetches relevant street network data of the matching country from the
database. This is accomplished by querying all streets which intersect with an
elliptic buffer of a set radius of sixty meters surrounding the GPS trajectory of
the inspection as well as all streets intersecting with those streets. The resulting
streets are then stored in the PlanetOsmLine table of the customers’ database

29

schema, as seen in Figure 5.1.
Both this and the filtering step greatly limit the amount of data that may need
to be traversed for queries during further inspection processing steps, but also
constitutes a limit of what data is available to a map matching process and has
to be taken into account.

5.6 Test set creation

The prototypes will be evaluated using a set of inspections for which ground truth
data will be collected. In order to be relevant to the research question 1.3, these
inspections should contain cases with and without map matching issues related
to missing street network data. The latter set will be used as a regression test
to evaluate the prototypes’ performance on inspections where the existing MM
implementation is already sufficient.
Collecting a truly representative sample for the vialytics use case is challenging
due to the data collection method as well as the customer base changing with
time. Additionally, preparing ground truth data for each inspection is a time-
consuming task, especially within the time constraints of this work.
Therefore, the state analysis of map matching of recent inspections in Chapter
4 should be combined with the experience of QA and customer success (CS) ex-
perts to curate a limited, but relevant sample of inspections for the test set (Table
5.8).

ID Requirement Verification

E.NF.1 The inspection set should represent rel-
evant MM issues at vialytics.

Inspection set has been
collected by interview-
ing QA and CS employ-
ees.

Table 5.8: Test set nonfunctional requirements for evaluation.

Due to the context of the evaluation and the limitations of other methods of col-
lecting ground truth as described in Section 3.1, ground truth data should be
able to be created from existing inspection data using manual matching. Ad-
ditionally, the evaluation application should simplify the creation of the ground
truth set. As such, it should display the information which is key to map matching:
The measured vehicle locations and the relevant OSM lines saved in the vialyt-
ics database. Since on-road ground truth matches need to include a reference
to the OSM line they are on, matches should snap to nearby lines when moving
them on the map. Additionally, it should be possible to visualize the segments

30

of the matched route by their associated OSM line in the application. This would
help to visually verify that there are no accidental outliers, as may be possible
at intersections. However, as off-road sections should also be identified, this in-
formation should be displayed on a satellite map, allowing an estimation of the
vehicle route independent of the known street network by positioning matches
on visible tracks.
To ease ground truth creation for on-road sections, the system should allow the
matches generated by a MM algorithm to be used as preliminary ground truth
matches. These can then be manually verified, adjusted, and enriched with off-
road matches when necessary. Following this, we define the requirements in Ta-
ble 5.9.

ID Requirement

E.F.6 The system must have a view for creating ground truth for an inspection.

E.F.7 The system must display location measurements and known OSM lines
in ground truth view.

E.F.8 The system must display a satellite map in ground truth view.

E.F.9 The system should allow using MM results as a starting point for ground
truth.

E.F.10 The system must allow creation and moving of matches for all location
measurements in ground truth view.

E.F.11 The system must allow snapping of ground truth matches to nearby OSM
lines while moving. This adds the lines’ OpenStreetMap ID to the match
information.

E.F.12 The system should visualize the matched route divided up by segments
of matches with the same OSM ID.

Table 5.9: Test set creation functional requirements for evaluation.

5.7 Result evaluation

As discussed in Section 3.1, there are multiple approaches for comparing MM
results depending on one’s access to ground truth data and which aspects are
of interest.
For the purposes of this thesis, we are interested in how well the prototypes can
detect sections of the vehicle trajectory outside of the known street network and
how this knowledge affects the matched route compared to the ground truth
route. Additionally, the prototypes are to be evaluated as potential replacements

31

or extensions for existing MM implementations. Therefore, it is relevant whether
this off-road detection impacts the prototypes’ ability to match sections on the
street network compared to regular HMM map matching.
Table 5.10 defines these requirements.

ID Requirement

E.F.13 The system must evaluate the prototypes’ ability to detect off-road sec-
tions.

E.F.14 The system must compare the matched route holistically to ground
truth.

E.F.15 The system must compare prototype results to a regular HMM MM im-
plementation.

Table 5.10: Result evaluation functional requirements.

32

6 Concept

As described in the requirements analysis, two systems with separate responsi-
bilities will be developed.

Having defined the key requirements for the MM prototypes and their evaluation,
this chapter will present concepts for both.
Firstly, the concept for the evaluation application is described in Section 6.1, fol-
lowed by the prototypes and the MM base application in Section 6.2.

6.1 Evaluation

The evaluation application concept is split into two key parts. Section 6.1.1 de-
fines the metrics by which the prototypes will be evaluated in order to answer
the main research question RQ.1, while Section 6.1.2 defines the core evaluation
process to be implemented, from gathering data to visualizing results.

33

6.1.1 Metrics

Implementing the requirements defined in Table 5.10, we define the following
metrics to be evaluated for each prototype (Table 6.1):

Description Symbol

Matched points count nm

OSM ID matching accuracy al

Discrete Fréchet distance of matched route to ground truth δmg

Discrete Fréchet distance of matched route to measured trajectory δmt

Computation time ∆tc

Average point to match great circle distance dmt

Off-road precision precision

Off-road recall recall

Table 6.1: MM result metrics.

Where the OSM line matching accuracy is defined as

|{matches with correct osm line}|
nm

(6.1)

and {matches with correct osm line} are all matched points where the MM imple-
mentation assigned the same OSM ID as the respective ground truth point. Im-
portant to note is that nm < np may be the case for the base prototype on off-road
inspections. This is due to the fact that it has a limited search radius for finding
on-road candidates and if a point has no candidates, it will be skipped and have
no match. As the required MM result is a list of matches (P.F.6), we change the
definitions for precision and recall from the length-based measurement of 3.1
to counting individual matches that have been classified correctly or incorrectly
according to Table 6.2.

recall =
T P

T P +FP
, precision =

T P
T P +FN

(6.2)

To put these metrics into context, attributes of the inspections in the test set
which are relevant to map matching, such as reported location measurement
accuracy and speed should also be tracked.
Using ground truth, data we can also count the number of off-road points in a

34

Algorithm match

Off-road On-road

G
T

m
at

ch Off-road T P FN

On-road FP TN

Table 6.2: Off-road classification confusion matrix, where matches are off-road
if they have no OSM ID.

given inspection, calculate the Fréchet distance between the measured trajec-
tory and the ground truth route and determine the precision and recall when
classifying positions as off-road and on-road. However, instead of calculating
the continuous Fréchet distance, the discrete Fréchet distance [5] will be used.
The complete list of inspection metrics is detailed in Table 6.3.

Description Symbol

Average reported horizontal location accuracy σ

Standard deviation of reported horizontal location accuracy SDσ

Average reported speed v

Inspection length l

Point count np

Off-road point count no

Discrete Fréchet distance of ground truth to trajectory δgt

Average point to ground truth match great circle distance dgt

Average time difference between consecutive points ∆tp

Table 6.3: Inspection metrics.

6.1.2 Evaluation process

In order to fulfill the evaluation requirements defined in Chapter 5, a concept was
developed for a frontend application to visualize and interact with MM data, as

35

well as the necessary components in the MM service to support it.

The main processes of the evaluation can be grouped into three tasks (Figure
A.1):
Firstly, during data collection all data necessary for map matching and the fur-
ther evaluation steps must be fetched from vialytics services and these RichIn-
spection entities stored in the frontend application to fulfill requirement E.F.1.
These include all points of the inspection, all nearby OSM lines that are con-
sidered for match candidates as well as match candidates for each point. This
stored data is then visualized and displayed to the tester for ground truth cre-
ation as described in the requirements 5.9.
To facilitate a consistent process, the following rules are applied to the ground
truth creation:

i. An on-road ground truth match should be at the closest point to the mea-
sured location on the appropriate OSM line.

ii. If there is an offset between satellite imagery and map data, align ground
truth matches using map data.

iii. If there is no fitting street in the map data, off-road ground truth matches
are positioned with the help of satellite imagery where possible.

iv. If there is neither map data nor fitting satellite imagery, the off-road ground
truth matches have the same position as the measured locations.

The additional ground truth data is then saved directly into the respective RichIn-
spection entity and represents a complete test set entry.
Lastly, in the prototype evaluation step the MM service is called with a complete
RichInspection and executes all prototypes to be evaluated, requiring no further
queries to other services. The metrics defined in the previous section are then
calculated and returned by the MM service alongside the matching results to the
frontend application, where they can be presented to the tester.

A sequence diagram of the entire process is depicted in Figure A.1.

6.2 Map matching service

The concept for the map matching service encompasses the base application,
which serves as the framework for the prototypes and includes its own HMM map
matching implementation used for reference, as well as the concrete prototype
modules.

36

6.2.1 Base application

While the previously existing MM implementation at vialytics already fulfills re-
quirements P.F.3, P.F.5 and P.F.6, it is integrated as part of a different service with
other responsibilities and does not allow the integration of the prototype mod-
ules. Therefore, a new base application will be implemented, porting the refer-
ence MM logic into a more extensible framework.
Although the base application is auxiliary to the MM aspects which are to be eval-
uated, it provides much of the functionality which is necessary for the general
functioning of the service. Accordingly, it also represents an equal test bench for
the prototype modules to be evaluated upon.

Defining the functionality and data model more concretely, the MM service will
implement an HMM and Viterbi algorithm which can work with the input and out-
put data as defined by the requirements. Following this, the appropriate map
matching entities are defined as shown in Figure 6.1.

Figure 6.1: Entity-relationship diagram of map matching data in the context of
the MM service.

Figure 6.2 shows an overview of the MM service architecture. As depicted, it
will only contain modules necessary for the MM logic, as well data access to the
necessary inspection data via the PostgreSQL DB and Core API. Both data access
and map matching are exposed through representational state transfer (REST)
endpoints for the evaluation application to request all required inspection data,
store it locally and request any prototype to run using it. In the production use
case, the MM controller can directly access the inspection data, as first request-
ing and storing it in the client is not necessary.

37

Figure 6.2: Concept for MM service.

6.2.2 Off-road map matching

Section 3.2 detailed three different approaches for extending existing MM algo-
rithms to consider off-road matches in their calculations. Due to the defined re-
quirements and time limitations of this thesis, as well as limited implementation
details in the source papers, those approaches cannot be implemented exactly
as proposed. Instead, core ideas from the proposals will be taken and applied
incrementally on top of the extensible base application.

The first prototype, termed direct off-road, will include an off-road candidate for
each measured point, as outlined by Haunert and Budig and Murphy et al.. This
off-road candidate will have the same position as the measured point but will not
have an OSM ID set. Without further modification, this would lead to the off-road
candidate getting chosen as the match for every point, as the emission and tran-
sition probability calculations are based on the match locations being different
than their respective trajectory points. Therefore, the distance calculations must
be adjusted, an issue for which we will use the solution of Haunert and Budig and
implement their conditional factor to apply to the transition probability.

As previously discussed, a potential issue with this approach is the usage of raw
location measurements for match candidates. To evaluate whether using a dif-
ferent model for supplying off-road candidates, as suggested by Murphy et al.,
is useful in our use case, the second prototype will implement a Kalman filter
and is therefore termed kalman off-road. The filter will be run on the measured
trajectory before the HMM step and its predictions for each measured time step
used as the location for an off-road candidate. These off-road candidates will be
scored using the same adjusted calculations as the first prototype.

38

Figure 6.3 depicts the key steps of the map matching sequence, how off-road
candidate handling and transition probability handling are modular and can in-
clude different steps depending on the chosen approach. This behavior can be
implemented using a behavioral software design pattern such as the strategy
pattern, where the two modular steps are encapsulated into an interface or ab-
stract class.

39

Figure 6.3: Concept for modular process in MM service.

40

7 Implementation

This chapter presents key details and choices made while implementing the con-
cepts for the evaluation application and MM service.

Python-based pseudocode will be used to succinctly depict implemented algo-
rithms while keeping enough concrete detail to allow comparison.

7.1 Evaluation

The evaluation application is implemented as a browser-based ReactJS 1 app.
While interactive, map-based applications can be built using a variety of plat-
forms and frameworks, running in a browser allows us to leverage existing tech-
nologies (Table 7.1) for fulfilling many of the defined requirements.

Name Description

ReactJS Framework for building state-driven interactive web ap-
plications

IndexedDB2 Storage API for large amounts of data, implemented in
most browsers

Mapbox GL JS3 Library providing a highly customizable hardware accel-
erated map using WebGL

visx4 Library providing highly customizable data visualization
components

Turf5 Library providing a large set of geospatial functions

Table 7.1: Key web technologies used.

1"React - A JavaScript library for building user interfaces" https://reactjs.org/ (accessed 16
June 2022)

2"Indexed Database API 3.0" https://www.w3.org/TR/IndexedDB/ (accessed 16 June 2022)

41

7.1.1 Evaluation process

As defined in the evaluation requirements and concept, the evaluation applica-
tion facilitates the evaluation process at every stage. This includes viewing in-
spections (Figure A.9), downloading and storing all necessary inspection data
using IndexedDB (Figure A.8), creating ground truth (Figure 7.1), prototype runs
(Figure A.10) and result visualization (Figure A.11).

Figure 7.1: Ground truth view for visual and interactive manual map matching.
Blue points represent the measured locations, green points are on-
road matches and yellow points are off-road matches. Overlaid on
top of the satellite base map are the known OSM street in light gray
and street segments with randomized unique colors. The bottom left
shows controls to hide and show map layers.

The in E.F.11 required functionality to snap ground truth matches to nearby OSM
streets was able to be implemented by querying street features around the match
in motion within a certain bounding box and identifying the closest. The nearest
point on this street to the moving match is then identified and used to override
the match position in addition to saving the corresponding OSM ID in the match

3"Interactive, thoroughly customizable maps in the browser, powered by vector tiles and WebGL"
https://github.com/mapbox/mapbox-gl-js (accessed 16 June 2022)

4"A collection of reusable low-level visualization components" https://github.com/airbnb/visx
(accessed 16 June 2022)

5"A modular geospatial engine written in JavaScript" https://github.com/Turfjs/turf (accessed
16 June 2022)

42

object. This process is similar to the nearest-neighbor approach used for identi-
fying match candidate for map matching. Is a ground truth match moved too far
away from nearby street, it is considered off-road and marked as such.

In addition to the required ground truth view, a separate map-based view was
implemented to aid in the development and evaluation process. As match candi-
date selection is a crucial process to analyze in HMM map matching, especially
with off-road candidates, the visualization view was created to present in-depth
information of not just the MM result, but all candidates that were considered as
well.
Both map views use Mapbox GL JS for their background maps and to display ge-
ographic data. In order to retain visual clarity and give the tester choice in what
aspects of that data to inspect, information is split into semantic map layers,
such as the OSM streets or matches, which can then be individually toggled to
be visible or hidden. However, even within a single layer map elements can over-
lap in situations, such as when a vehicle doubles back. To remedy this, a range
slider was implemented, allowing the tester to select any continuous range of
points in the inspections and hide the remainder.

After collecting ground truth for an inspection, the tester can view pertinent
characteristics such as the measured speed and accuracy of each point (Figure
A.10), as defined in requirements E.F.4 and E.F.5.

7.1.2 Discrete Fréchet distance

The discrete Fréchet distance implementation, seen in Listing A.1, uses the Dis-
creteFrechet class to encapsulate the initialization, entrypoint and recursive parts
of the algorithm and makes use of dynamic programming principles by storing
and reusing intermediate results (self.mem).

As the points of the compared polylines are geographical points with latitude
and longitude coordinates, the distance(pointA, pointB) function calculates the
great circle distance between the two points.

7.2 Prototypes

The concept for the MM service is implemented as a Go (Golang6) server with a
REST API.

6"The Go Programming Language" https://go.dev/ (accessed 21 June 2022)

43

Section 7.2.1 will discuss the pseudocode for the core map matching functions,
illustrating the basis on which the off-road implementations of the following sec-
tions build.

7.2.1 Core map matching implementation

When implementing the HMM scoring logic and Viterbi algorithm, multiple iter-
ations were made in order to determine whether a more functional or object-
oriented approach would be a better fit for the defined concept and what data
structures to use to represent the entities defined in Figure 6.1. The pseudocode
found in Section A.6 of the appendix, represents a concise version of the final Go
code. Instead of creating emissions as concrete objects, they are reflected us-
ing a map structure, which efficiently links the candidate object reference to its
probability value. Similarly, as transitions are relations between two candidate
objects, they can be represented using a two-dimensional map structure.

Firstly, Listing A.2 shows the core map matching function, taking in an array of
observations, sorted in ascending order by time, and a map of candidates, re-
lating an observation reference to an array of candidates. The sigma and beta
parameters refer to the HMM parameters σz and β as defined by Newson and
Krumm, influencing how emission and transition probabilities are calculated. For
the purposes of this work, they are experimentally set constants, having the fol-
lowing values:

sigma = 2, beta = 0.12 (7.1)

The core of the function is a loop, which iterates over all observations and cal-
culates emission and transition probabilities for each and feeds them into the
Viterbi algorithm implementation. As transitions are possible between any of the
previous and current candidates, they are calculated in a nested loop. The mod-
ularity of the transition probability handling is left out for clarity and depicted is
instead only the base logic. Several functions are not defined in the pseudocode,
as their concrete implementation is not immediately relevant to this work Their
functionality will instead be outlined here:

• gc_distance calculates the great circle distance between two geographic
points.

• e_prob is an implementation of Equation (1) as defined in [12].

• t_prob is an implementation of Equations (2) and (3) as defined in [12].

44

• path_distance calculates the distance between two geographic points along
the street network, if possible. If there is no path, the distance is set to the
maximum.

The Viterbi class is defined in Listing A.3 and implements all functionality to iter-
atively take in candidates as well as their emission and transitions to finally re-
trieve the most likely candidate sequence. The algorithm is initialized with each
candidate scored using only their emission probability, as there are no initial
transitions. With each iteration, the most probable previous candidate is calcu-
lated for each new candidate based on the available transitions and this knowl-
edge saved as a state, containing both the new candidate and a back pointer to
the previous state. As the probabilities are multiplied along the candidate se-
quence, the most likely path can then be retrieved at the end by finding the last
state with the highest final probability and iteratively following its back point-
ers.

7.2.2 Off-road candidate scoring

As outlined in the concept, Section 6.2.2, the scoring has to be adjusted in the
off-road prototypes. This is done through modifying the transition probability
calculation of Listing A.2 to include a conditional factor. Listing 7.1 shows how
the proposal by Haunert and Budig is implemented using the isOffroad attribute
of candidates, the number of on-road candidates and the constants psi (ψ) and
phi (φ).
For the purposes of the evaluation, these two parameters were set to the fol-
lowing values, found to give the best results during the testing of Haunert and
Budig:

phi = 10, psi = 1.5 (7.2)

45

1 factor = 1
2 if fromCandidate.isOffroad {
3 if toCandidate.isOffroad {
4 factor = 1 / (psi∗onRoadCandidateCount + 1.0)
5 } else {
6 factor = psi / (psi∗onRoadCandidateCount + 1.0)
7 }
8 } else {
9 if toCandidate.isOffroad {

10 factor = 1.0 / (phi∗onRoadCandidateCount + 1.0)
11 } else {
12 factor = phi / (phi∗onRoadCandidateCount + 1.0)
13 }
14 }
15

16 transitions [fromCandidate][toCandidate] = t_prob(
17 beta,
18 path_distance(fromCandidate, toCandidate),
19 gps_distance
20) ∗ factor

Listing 7.1: Off-road candidate scoring pseudocode.

7.2.3 Kalman filter

Kalman filters have many uses and can be applied and tuned in numerous ways.
Due to the constraints of the scope of this work, the implementation used for
the kalman off-road prototype will be limited in the inputs and internal model it
uses.

Pseudocode for the Kalman filter implementation, based on [4], can be found
in Listing A.4. Once again, an object-oriented approach is taken, which can en-
capsulate not only the relevant initialization, prediction, and update steps, but
also the internal state of the filter. As the only available input indicating covari-
ance or process noise is the reported location accuracy, the covariance matrix
and process noise matrix are simplified to a single value each. Additionally, the
used dynamic system model is simplified and reflects basic Newtonian move-
ment with constant speed. This is implemented in the calc_destination function,
which simply calculates the resulting geographic position, given a starting posi-
tion, distance and course.
Due to these simplifications, the remaining matrix operations can be calculated
as individual terms to increase code readability and facilitate debugging.

Summarizing the functionality of this implementation, the filter is initialized with
an initial state, containing current position, speed, and course of the vehicle, as

46

well as the reported accuracy. The predict and update functions can then be
iteratively called with observations:

• predict uses the previous state information and the dynamic system model
to predict the state and covariance deltaTime seconds in the future.

• update takes in the current measured state and accuracy and compares
it to the predicted state. The new internal state is then set to a combina-
tion of the two compared states, the nature of which is determined by the
calculated gain.

After one predict and update iteration, the internal state represents the filters’
prediction for the current time.
How this implementation is used to create off-road candidates for the kalman
off-road prototype can be seen in Listing A.5.

47

8 Results

The results presented in this chapter were calculated using collected ground
truth data and MM results from ten inspections selected from the vialytics sys-
tem.

Firstly, key findings of the metrics concerning how the measured trajectory and
ground truth relate, are presented in Section 8.1. Having established the context
for the evaluation, Section 8.2 then describes the prototype results.

8.1 Test set characteristics

As described in Chapter 5, the inspections in the test set were collected to rep-
resent relevant MM issues with the existing MM system. They were not collected
in a specific order, however for the purposes of the result visualizations, each
inspection is given a number. Additionally, the set is separated into inspections
that contain sections that were classified as off-road in the ground truth (nos. 0
to 4), meaning they appear to be outside the known street network, and inspec-
tions that are entirely on-road (nos. 5 to 9). Figure 8.1 depicts this classification
clearly and shows how four out of the five inspections with off-road segments in
fact contain a more off-road points than on-road.

Figure 8.1: Percentage of points with an off-road match out of the total number
of points per inspection (nonp).

49

To aid in visualizing the inspection distributions, the average is depicted as a
line and a dotted line is drawn from each datum to the average, visualizing the
deviation from it. In cases where outlying data would extend the scale too much
to see differences in the other datums, outliers are drawn at the maximum scale
height with a dashed line and their true value written next to them. Additionally,
the median is drawn in these cases, as the average is sensitive to outliers.

While the exact position of ground truth matches does not reflect the true posi-
tion of the vehicle, but rather only aims to be a reference for the corresponding
OSM line, it is still of interest to view the average distance between ground truth
and measured points compared to the horizontal accuracy reported by the mea-
surement device. Figure 8.2 shows this comparison, where the accuracy value
can be understood as the radius of a measurement error circle and the per-point
distance to the corresponding ground truth is the great circle distance between
the two positions. Aside from the outlying measurement in inspection seven, the
average accuracy appears to be closely clustered around the median of 4.84
meters and is thus within the typical range of GPS devices. The average per-
point distances to the ground truth largely match these results, being within the
accuracy range. However, the results of inspections with off-road segments are
strongly skewed towards less distance and should be treated with the least con-
fidence, as the manually placed matches have no OSM lines to reference and
placement using satellite imagery can be unreliable (cf. Section 2.3).

(a) Average reported accuracy per inspection
(σ)

(b) Average per-point distance from
measured position to ground truth match

(dgt)

Figure 8.2: Per-inspection comparison of reported accuracy and calculated per-
point distance to ground truth.

Looking at the measured trajectory and ground truth route trajectory as wholes,
Figure 8.3 depicts the discrete Fréchet distance between the two. This shows
that, despite the similar average per-point accuracies, the more maximum-oriented
Fréchet distance reflects much stronger variance in the test set.

50

Figure 8.3: Discrete Fréchet distance between measured trajectory and ground
truth route per inspection (δgt).

Further figures illustrating the nature of the test set can be found in the appendix,
Section A.3.

8.2 Prototype results

For visualizing the prototype results, the inspection numbering is consistent with
the charts in Section 8.1. To facilitate comparison, the results of all three map
matching approach implementations, the base implementation with no off-road
specific logic, direct off-road and kalman off-road prototypes, will be shown in
the same charts. Implementations are identified using different colors, line pat-
terns and line markers.

Firstly, we compare the line matching accuracy in Figure 8.4. Since both off-road
prototypes are based on the base implementation and the kalman prototype is
based on the same scoring extensions of the direct prototype, similar results
in this area were to be expected. It is nevertheless noteworthy that the base
implementation accuracy suffers greatly from off-road sections, despite points
with no matches being filtered out and therefore not counting against the metric.
In both off-road implementations, the on-road candidates can be unlikely enough
for the off-road candidates to be chosen, leading to a correct classification of
off-road segments. As can be seen in the right set of inspections, this did not
significantly negatively influence their accuracy in purely on-road situations.

51

Figure 8.4: Line matching accuracy per inspection (al).

Both off-road candidates have the same number of points wrongly classified as
off-road, with one false positive each in inspections one, three, six and eight. On
the other hand, false negatives, shown in Figure 8.5, were much more common.
This behavior is a trade-off and can be adjusted using the psi and phi parame-
ters.

Figure 8.5: False positives per inspection (FP).

Precision and recall curves can be found in the appendix, Section A.4. More than
90 % of locations outside of the known street network are correctly classified as
off-road, while less than 3 % of points are falsely classified as off-road.

The pattern in Figure 8.4 is repeated when looking at discrete Fréchet distances,
depicted in Figure 8.6, where the off-road prototypes have significantly lower dis-
tances both to the measured trajectory and the ground truth route than the base
implementation.

52

(a) Distance between matched route and
measured trajectory (δmt)

(b) Distance between matched route and
ground truth route (δmg)

Figure 8.6: Prototype result discrete Fréchet distance comparisons.

Figure 8.7 depicts the computational time per inspection point needed for the
map matching process by each of the implementations. All MM operations were
run on an AMD Ryzen 5700u CPU in a largely uncontrolled environment. While
the difference between implementations is small, the base application consis-
tently takes the least time to execute. However, there is no clear pattern be-
tween the off-road prototypes, indicating that the Kalman filter calculations may
be negligible compared to the time spent on calculating HMM probabilities and
running the Viterbi algorithm for the additional off-road candidates.
The outlier at inspection three is most likely due to a lack of optimization of dis-
tance calculations in the base application, specifically regarding operations on
atypically long OSM lines, and is therefore reflected in all three datums.

Figure 8.7: Computational time per point for each implementation (∆tcnp).

53

9 Discussion

Based on the results from evaluating the prototypes on the test set of ten in-
spections, we believe extending existing HMM map matching methods with ap-
proaches to detect off-road sections can improve MM performance in situations
where the given street network data is incomplete or incorrect. More specifi-
cally, the increased line matching accuracy on inspections with off-road sections
without a significant number of false positives shows this approach could have
an almost purely positive impact when implemented. The drop in accuracy of
the base implementation can be attributed to the start and end of off-road seg-
ments, where match candidates can still be found within the search radius and
are wrongly selected as matches. The off-road prototypes avoid this issue by
explicitly identifying missing streets instead of purely relying on a distance cut-
off.

However, this evaluation was specific to the use case and dataset of vialytics.
The inspection dataset is small, and the ground truth collection method could
be inconsistent. The set of inspections with off-road sections also contains sit-
uations where the underlying cause for the incomplete street network informa-
tion is not a lack of information in OSM, but rather in the filtered copy of OSM
data in the vialytics system. Thus, while the result supports further investigation
towards making use of the evaluated approaches at vialytics, it can only be gen-
eralized to a limited extend for other MM use cases and cannot be used to draw
conclusions about the completeness or correctness of OSM data.

The lack of difference between the direct and kalman prototypes in the com-
pared metrics may indicate further shortcomings of this work. One possible ex-
planation could be the lack of truly raw location measurement data. As previ-
ously described, the geographical locations of points in the vialytics system are
the result of unknown sensor processing in the operating system of the smart-
phone, as well as linear interpolation in the vialytics app due to irregular sam-
pling rates. These processes may already modify the measurement data too
much for the implemented Kalman filter to have a meaningful impact. Addition-
ally, the used implementation uses simplifications in many aspects, such as the
modeling of process noise, covariance, and the dynamic system. Kalman filter
implementations more specifically suited and tuned to this use case may yield
better results. The paper by Murphy et al. proposing the use of a Kalman filter

55

for map matching used an extended Kalman filter, integrated it with a different
HMM implementation and ultimately used an entirely different base model in-
stead 1.

Another area which was only explored to a limited extent are the uses of de-
tected off-road segments beyond preventing mismatches of on-road points. Map
matching and map building, or map inference, are closely related fields and such
knowledge of off-road segments could be used to improve the incomplete street
network data. In such a use case, the use of a Kalman filter may also have addi-
tional benefits, as the predicted locations could prove better for inferring streets
and intersections.

Finally, several parameters such as sigma, beta, phi and psi, were assigned a
constant value for all testing. Experimenting with different values could result in
a better understanding of how they influence the HMM or improve results.

1"A New Real-Time Map-Matching Algorithm at Lyft | by Marie Douriez | Lyft Engineering"
https://eng.lyft.com/a-new-real-time-map-matching-algorithm-at-lyft-da593ab7b006 (ac-
cessed 21 June 2022)

56

10 Conclusion

This work has presented a use case for an off-line vehicle map matching algo-
rithm which is aware of incomplete street network data and can benefit from
this knowledge. Using this use case, research questions were formulated to de-
fine the core objectives of this work alongside requirements set by the context.
Several fitting approaches from state-of-the-art literature were then presented
and partially integrated into two prototypes, both based on a shared HMM map
matching implementation. The prototypes, alongside the base implementation
were then evaluated on a test set of measured vehicle trajectories. Ground truth
data for the test set was collected through tool-assisted manual matching, al-
lowing for not just a reference for which street a given measurement should be
matched to, but also whether it is considered off-road or on-road.

The evaluation results showed that the prototypes classified more than 90 %
of locations outside of the known street network correctly as off-road, without
negatively impacting the matching accuracy for on-road trajectories in a signifi-
cant way. This off-road detection inherently resulted in accuracy benefits, due to
off-road locations no longer being incorrectly matched to a street. However, the
prototypes add computational complexity to the HMM map matching algorithm
and therefore increase the processing time needed.
Using a Kalman filter to pre-process the measured locations before using them
as off-road match candidate did not meaningfully affect any of the compared
metrics.

Future work should investigate finding the optimal parameters for the HMM and
off-road scoring calculations on a larger test set, as well as whether dynamically
or conditionally changing them leads to better results.
Furthermore, more possibilities of using known off-road trajectory segments should
be explored, such as in the context of map building.

57

Acronyms

CNN convoluted neural network

CS customer success

GIS geographic information system

GPS global positioning system

HMM Hidden Markov Model

ML machine learning

MM map matching

OSM OpenStreetMap

OSM ID OpenStreetMap ID

QA quality assurance

REST representational state transfer

sIMM semi-interacting multiple model filter

VGI volunteered geographic information

59

Glossary

Core API Central API for data access to vialytics data.

Fréchet distance Measure of similarity, or distance, between curves that takes
the continuity of points on the curves into account.

geographic information system System, through which users can view, ana-
lyze, and interact with geographic data.

great circle distance Shortest distance between two points on the surface of a
sphere, along the surface of the sphere.

Hidden Markov Model Statistical model, in which a series of unobservable hid-
den states are related to a series of observations.

inspection A batch of recorded data, consisting of an image, positional data, a
timestamp and more.

Kalman filter Algorithm, that can model measurement error on a series of mea-
surements over time and can make predictions for future measurements
which can be more accurate than a single measurement.

machine learning Algorithms, which use input data to improve their results over
time.

map matching Process, which matches the measured location data with the
known street geometry in order to find the most likely corresponding route
on the street network.

match candidate Street segment or a point on a street segment, which is a pos-
sible part of the true vehicle route.

OpenStreetMap Map-based and explicit VGI project.

61

OpenStreetMap ID Integer number, assigned to each segment of an OSM way
or OSM line. They are not stable, in the sense that they may be reassigned
to a different segment, but they do uniquely identify an OSM line in a given
relation.

Viterbi algorithm Dynamic programming algorithm for obtaining the most likely
sequence of hidden states in a Hidden Markov Model.

weak Fréchet distance Version of the Fréchet distance that allows non-monotone
continuous reparameterizations while calculating the distance between two
curves.

62

Bibliography

[1] Geoff Boeing. OSMnx: New methods for acquiring, constructing, analyz-
ing, and visualizing complex street networks. Computers, Environment and
Urban Systems, 65:126–139, sep 2017. ISSN 01989715. doi: 10.1016/j.
compenvurbsys.2017.05.004.

[2] Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola Wenk. On
map-matching vehicle tracking data. In VLDB 2005 - Proceedings of 31st
International Conference on Very Large Data Bases, volume 2, pages 853–
864, 2005. ISBN 1595931546.

[3] Pingfu Chao, Wen Hua, and Xiaofang Zhou. Trajectories know where
map is wrong: an iterative framework for map-trajectory co-optimisation.
World Wide Web, 23(1):47–73, jan 2020. ISSN 15731413. doi: 10.
1007/s11280-019-00721-w. URL https://link.springer.com/article/

10.1007/s11280-019-00721-w.

[4] Akash Deep, Monika Mittal, and Vikas Mittal. Application of Kalman Filter
in GPS Position Estimation. 8th IEEE Power India International Conference,
PIICON 2018, jul 2018. doi: 10.1109/POWERI.2018.8704368.

[5] Thomas Devogele, Laurent Etienne, Maxence Esnault, and Florian Lardy.
Optimized Discrete Fréchet Distance between trajectories. Proceedings of
the 6th ACM SIGSPATIAL Workshop on Analytics for Big Geospatial Data, 9,
2017. doi: 10.1145/3150919. URL https://doi.org/10.1145/3150919.

3150924.

[6] Adam Van Etten. City-scale road extraction from satellite imagery v2: Road
speeds and travel times. Proceedings - 2020 IEEE Winter Conference on
Applications of Computer Vision, WACV 2020, pages 1775–1784, mar 2020.
doi: 10.1109/WACV45572.2020.9093593.

[7] Mohammad Ali Goudarzi and René Jr Landry. Assessing horizontal posi-
tional accuracy of Google Earth imagery in the city of Montreal, Canada.
Geodesy and Cartography, 43(2):56–65, apr 2017. ISSN 20297009. doi:
10.3846/20296991.2017.1330767. URL https://www.tandfonline.com/

doi/abs/10.3846/20296991.2017.1330767.

63

https://link.springer.com/article/10.1007/s11280-019-00721-w
https://link.springer.com/article/10.1007/s11280-019-00721-w
https://doi.org/10.1145/3150919.3150924
https://doi.org/10.1145/3150919.3150924
https://www.tandfonline.com/doi/abs/10.3846/20296991.2017.1330767
https://www.tandfonline.com/doi/abs/10.3846/20296991.2017.1330767

[8] Jan-Henrik Haunert and Benedikt Budig. An algorithm for map match-
ing given incomplete road data. In Proceedings of the 20th International
Conference on Advances in Geographic Information Systems - SIGSPA-
TIAL ’12, page 510, New York, New York, USA, 2012. ACM Press. ISBN
9781450316910. doi: 10.1145/2424321.2424402. URL http://dl.acm.

org/citation.cfm?doid=2424321.2424402.

[9] Jasmeet Kaur, Jaiteg Singh, Sukhjit Singh Sehra, and Hardeep Singh Rai.
Systematic literature review of data quality within openstreetmap. In Pro-
ceedings - 2017 International Conference on Next Generation Computing
and Information Systems, ICNGCIS 2017, pages 159–163. Institute of Elec-
trical and Electronics Engineers Inc., nov 2018. ISBN 9781538642054. doi:
10.1109/ICNGCIS.2017.35.

[10] Huajian Mao, Wuman Luo, Haoyu Tan, Lionel M Ni, and Nong Xiao. Ex-
ploration of ground truth from raw GPS data. In Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, volume 12, pages 118–125, New York, New York, USA, 2012. ACM Press.
ISBN 9781450315425. doi: 10.1145/2346496.2346515.

[11] James Murphy, Yuanyuan Pao, and Albert Yuen. Map matching when the
map is wrong: Efficient on/off road vehicle tracking and map learning.
IWCTS 2019 - Proceedings of the 12th International Workshop on Compu-
tational Transportation Science, 2019. doi: 10.1145/3357000.3366143.

[12] Paul Newson and John Krumm. Hidden Markov map matching through noise
and sparseness. GIS: Proceedings of the ACM International Symposium on
Advances in Geographic Information Systems, pages 336–343, 2009. doi:
10.1145/1653771.1653818.

[13] Efstratios Rappos, Stephan Robert, Philippe Cudré-Mauroux, and Philippe
Cudré. A Force-Directed Approach for Offline GPS Trajectory Map Match-
ing. Proceedings of the 26th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, 18, 2018. doi: 10.1145/
3274895. URL https://doi.org/10.1145/3274895.3274919.

[14] Hansi Senaratne, Amin Mobasheri, Ahmed Loai Ali, Cristina Capineri, and
Mordechai (Muki) Haklay. A review of volunteered geographic information
quality assessment methods, jan 2017. ISSN 13623087.

[15] Mudhakar Srivatsa, Raghu Ganti, Jingjing Wang, and Vinay Kolar. Map
matching: Facts and myths. In GIS: Proceedings of the ACM International
Symposium on Advances in Geographic Information Systems, pages 474–
477, 2013. ISBN 9781450325219. doi: 10.1145/2525314.2525466. URL
https://dl.acm.org/doi/10.1145/2525314.2525466.

64

http://dl.acm.org/citation.cfm?doid=2424321.2424402
http://dl.acm.org/citation.cfm?doid=2424321.2424402
https://doi.org/10.1145/3274895.3274919
https://dl.acm.org/doi/10.1145/2525314.2525466

[16] Fernando Torre, David Pitchford, Phil Brown, and Loren Terveen. Matching
GPS traces to (possibly) incomplete map data. In Proceedings of the 20th
International Conference on Advances in Geographic Information Systems
- SIGSPATIAL ’12, page 546, New York, New York, USA, 2012. ACM Press.
ISBN 9781450316910. doi: 10.1145/2424321.2424411. URL http://dl.

acm.org/citation.cfm?doid=2424321.2424411.

[17] John E. Vargas-Munoz, Shivangi Srivastava, Devis Tuia, and Alexandre X.
Falcao. OpenStreetMap: Challenges and Opportunities in Machine Learning
and Remote Sensing. IEEE Geoscience and Remote Sensing Magazine, 9(1):
184–199, mar 2021. ISSN 21686831. doi: 10.1109/MGRS.2020.2994107.

[18] Hong Wei, Yin Wang, George Forman, Yanmin Zhu, and Haibing Guan. Fast
Viterbi map matching with tunable weight functions. In GIS: Proceed-
ings of the ACM International Symposium on Advances in Geographic In-
formation Systems, pages 613–616, 2012. ISBN 9781450316910. doi:
10.1145/2424321.2424430.

[19] Hong Wei, Yin Wang, George Forman, and Yanmin Zhu. Map matching: Com-
parison of approaches using sparse and noisy data. In GIS: Proceedings
of the ACM International Symposium on Advances in Geographic Informa-
tion Systems, pages 434–437, 2013. ISBN 9781450325219. doi: 10.1145/
2525314.2525456. URL http://dx.doi.org/10.1145/2525314.2525456.

[20] Xiaofang Zheng, Yu; Zhou. Computing with Spatial Trajectories. Springer
New York, 2011. doi: 10.1007/978-1-4614-1629-6.

65

http://dl.acm.org/citation.cfm?doid=2424321.2424411
http://dl.acm.org/citation.cfm?doid=2424321.2424411
http://dx.doi.org/10.1145/2525314.2525456

Attachments

A.1 Evaluation process diagram

Figure A.1: Evaluation process concept for a single inspection and
prototype.

67

A.2 Discrete Fréchet distance pseudocode

1 class DiscreteFrechet:
2 def init (self , p, q) :
3 self .mem = []
4 # Initialize 2D array to −1
5 for i in p:
6 subMem = []
7 for j in q:
8 subMem.append(−1)
9 self .mem.append(subMem)

10

11 def computeRecursive(self, i, j) :
12 if self .mem[i][j] > −1:
13 return self .mem[i][j]
14 elif i == 0 and j == 0:
15 self .mem[i][j] = distance(self .p[i], self .q[j])
16 elif i > 0 and j == 0:
17 self .mem[i][j] = max(
18 self .computeRecursive(i−1, 0),
19 distance(self .p[i], self .q[j])
20)
21 elif i == 0 and j > 0:
22 self .mem[i][j] = max(
23 self .computeRecursive(0, j−1),
24 distance(self .p[i], self .q[j])
25)
26 elif i > 0 and j > 0:
27 self .mem[i][j] = max(
28 min(
29 self .computeRecursive(i−1, j),
30 self .computeRecursive(i−1, j−1),
31 self .computeRecursive(i, j−1)
32) ,
33 distance(self .p[i], self .q[j])
34)
35 else:
36 self .mem[i][j] = Inf
37

38 return self .mem[i][j]
39

40 def distance(self) :
41 return self .computeRecursive(len(self.p)−1, len(self .q)−1)
42

Listing A.1: Discrete Fréchet distance based on [5].

68

A.3 Additional test set visualizations

Figure A.2: Number of points per inspection.

Figure A.3: Standard deviation of reported accuracy per inspection.

Figure A.4: Average measured speed per inspection.

69

Figure A.5: Average time difference between consecutive points per inspection.

70

A.4 Additional prototype result visualizations

Figure A.6: Off-road precision on inspections with off-road segments.

Figure A.7: Off-road recall on inspections with off-road segments.

71

A.5 Evaluation application screenshots

Figure A.8: Index page of evaluation application. On the left: Controls for viewing
the MM results of an inspection in the Visualization view. On the right:
Inspections in the test set, controls for adding inspections, and going
through the evaluation process steps.

72

Figure A.9: Visualization view for detailed visual analysis of MM results. Blue
points represent the measured locations, green points are on-road
matches and gray points are all candidate matches for the currently
selected point (purple outline). Detailed information is shown for the
MM result in the bottom right as well as for the selected marker in the
top. The bottom left shows controls to hide and show map layers.

73

Figure A.10: Inspection test run view for displaying a given inspection with
ground truth data, visualizing key metrics as well as triggering MM
prototype runs.

Figure A.11: Evaluation view for visualizing metrics for the entire inspection test
set.

74

A.6 Core map matching pseudocode

1 def map_match(observations, candidates, sigma, beta):
2 viterbi = Viterbi ()
3 for i , obs in observations:
4 emissions = map[Candidate]float
5 transitions = map[Candidate]map[Candidate]float
6 for _, candidate in candidates[obs]:
7 emissions[candidate] = e_prob(sigma, gc_distance(candidate, obs))
8 if i == 0:
9 viterbi . init (obs, candidates[obs], emissions)

10 else:
11 prev_obs = observations[i−1]
12 gps_distance = gc_distance(prev_obs, obs)
13 for j , fromCandidate in candidates[prev_obs]:
14 for k, toCandidate in candidates[obs]:
15 transitions [fromCandidate][toCandidate] = t_prob(
16 beta,
17 path_distance(fromCandidate, toCandidate),
18 gps_distance
19)
20 viterbi .next(obs, candidates[obs], emissions, transitions)
21 return viterbi .retrieveSequence()
22

Listing A.2: HMM & Viterbi map matching pseudocode.

75

1 class Viterbi :
2 def init (self , candidates, emissions):
3 for _, candidate in candidates:
4 self . last_scores[candidate] = emissions[candidate]
5 self . last_states[candidate] = {
6 state: candidate,
7 back_pointer: None
8 }
9

10 def next(self , candidates, emissions, transitions) :
11 states = map[Candidate]{state: Candidate, back_pointer: Candidate}
12 scores = map[Candidate]float
13 for _, candidate in candidates:
14 max_t_prob = −Inf
15 max_prev_candidate = None
16 for prevCandidate, prevScore in self.last_scores:
17 prob = prevScore ∗ transitions [prevCandidate][candidate]
18 if prob > max_t_prob:
19 max_t_prob = prob
20 max_prev_candidate = prevCandidate
21

22 e_prob = emissions[candidate]
23 scores[candidate] = max_t_prob ∗ e_prob
24 states[candidate] = {
25 state: candidate,
26 back_pointer: self . last_states[max_prev_candidate]
27 }
28 self . last_scores = scores
29 self . last_states = states
30

31 def retrieveSequence(self):
32 max_last_candidate = None
33 max_p = −Inf
34 for candidate, score in self . last_scores:
35 if score > max_p:
36 max_last_candidate = candidate
37 max_p = score
38 max_last_state = self.last_states[max_last_candidate]
39 sequence = [max_last_state.state]
40

41 bp = max_last_state.back_pointer
42 while bp is not None:
43 sequence.append(bp.state)
44 bp = bp.back_pointer
45

46 return sequence
47

Listing A.3: Viterbi pseudocode.

76

A.7 Kalman filter pseudocode

1 class Kalman:
2 def init (self , state, accuracy):
3 self .state = state
4 self .accuracy = accuracy
5 self .covariance = accuracy ∗ accuracy
6

7 def predict(self , deltaTime):
8 predictedPos = calc_destination(
9 self .state.position ,

10 self .state.speed ∗ deltaTime,
11 self .state.course
12)
13 self .predictedState = {
14 position : predictedPos,
15 speed: self .state.speed,
16 course: self .state.course
17 }
18 noise = self .accuracy ∗ self .accuracy ∗ deltaTime
19 self .predictedCovariance = self.covariance ∗ deltaTime + noise
20

21 def update(self, state, accuracy):
22 noise = accuracy
23 gain = self .predictedCovariance ∗ (1/(self .predictedCovariance + noise))
24 self .covariance = (1−gain) ∗ self .predictedCovariance
25

26 deltaLat = state.position . lat − self .predictedState.position. lat
27 deltaLng = state.position . lng − self .predictedState.position.lng
28 deltaSpeed = state.speed − self.predictedState.speed
29 deltaCourse = state.course − self .predictedState.course
30

31 self .state = {
32 position : {
33 lat : self .predictedState.position. lat + gain∗deltaLat,
34 lng: self .predictedState.position.lng + gain∗deltaLng,
35 },
36 speed: self .predictedState.position.speed + gain∗deltaSpeed,
37 course: self .predictedState.position.course + gain∗deltaCourse
38 }
39

Listing A.4: Kalman filter pseudocode.

77

1 def add_kalman_candidates(observations, candidates):
2 kf = new Kalman()
3 kf . init ({
4 position : {
5 lat : observations[0].lat ,
6 lon: observations[0].lon,
7 },
8 speed: observations[0].speed,
9 course: observations[0].course,

10 },
11 observations[0].Accuracy,
12)
13 for i , obs in observations:
14 if i == 0:
15 predictedCandidate = {
16 lat : obs.lat ,
17 lon: obs.lon,
18 }
19 candidates.append(predictedCandidate)
20 continue
21 kf . predict(obs.time−observations[i−1].time) # Time difference is in seconds
22 kf .update({
23 position : {
24 lat : obs.lat ,
25 lon: obs.lon,
26 },
27 speed: obs.speed,
28 course: obs.course,
29 },
30 obs.Accuracy,
31)
32 predictedState = kf .state
33 predictedCandidate = {
34 lat : predictedState.position. lat ,
35 lon: predictedState.position.lon,
36 }
37 candidates.append(predictedCandidate)
38

Listing A.5: Kalman candidate prediction pseudocode.

78

Erklärung zur Abgabe einer Bachelor- / Master-Thesis

Ich versichere ehrenwörtlich, dass ich

 die abgegebene Thesis selbständig verfasst habe,
 alle benutzten Quellen und Hilfsmittel - dazu zählen auch sinngemäß übernommene

Inhalte, leicht veränderte Inhalte sowie übersetzte Inhalte - in Quellenverzeichnissen,
Fußnoten oder direkt bei Zitaten angegeben habe,

 alle wörtlichen und sinngemäßen Zitate von Textstücken, Tabellen, Grafiken, Fotos,
Quellcode usw. aus fremden Quellen als solche gekennzeichnet und mit
seitengenauen Quellenverweisen versehen habe,

 die von mir eingereichten Dokumente und Artefakte noch nicht in dieser oder
ähnlicher Form einer anderen Kommission zur Prüfung vorgelegt wurden,

 alle nicht als Zitat gekennzeichneten Inhalte selbst erstellt habe und dass ich
 den „Leitfaden für gute wissenschaftliche Praxis im Studiengang MKI“1 kenne und

achte.

Mir ist bekannt, dass unmarkierte und unbelegte Zitate und Paraphrasen Plagiate sind und
nicht als handwerkliche Fehler, sondern als eine Form vorsätzlicher Täuschung der Prüfer
gelten, da fremde Gedanken als eigene Gedanken vorgetäuscht werden mit dem Ziel der
Erschleichung einer besseren Leistungsbewertung.
Mir ist bekannt, dass Plagiarismus die Standards guter wissenschaftlicher Praxis, die Regeln
des Studiengangs Medien- und Kommunikationsinformatik, die Studien- und
Prüfungsordnung der Hochschule Reutlingen (§ 10 Täuschung und Ordnungsverstoß) und
das Landeshochschulgesetz von Baden-Württemberg (§ 3 Wissenschaftliche Redlichkeit
Abs. 5, § 62 Exmatrikulation Abs. 3) missachtet und seine studienrechtlichen Folgen vom
Nichtbestehen bis zur Exmatrikulation reichen.
Mir ist auch bekannt, dass Plagiate sogar das Urheberrechtsgesetz (§ 51 Zitate, § 63
Quellenangabe, § 106 Unerlaubte Verwertung urheberrechtlich geschützter Werke) verletzen
und zivil- und strafrechtliche Folgen nach sich ziehen können.

Nachname: __

Vorname: __

Matrikelnummer: __

Datum: __

Unterschrift: __

1 https://bscwserv.reutlingen-university.de/bscw/bscw.cgi/d2871027/GWP.pdf

79

	List of Figures
	List of Tables
	Introduction
	Context
	Motivation
	Research questions

	Foundations
	Vehicle location measurement
	Street networks
	Street network inference
	Map matching
	Global geometric distance
	Hidden Markov Models (HMMs)
	Shortest path

	Related Work
	Comparing map matching algorithms
	Map matching with missing street network data
	Using location measurements as match candidates
	Replacing missing roads with simplified GPS geometry
	Combining multiple models

	State analysis
	Requirements analysis
	Prototype implementation
	Data structure
	Development process
	Location measurements
	Street network data
	Test set creation
	Result evaluation

	Concept
	Evaluation
	Metrics
	Evaluation process

	Map matching service
	Base application
	Off-road map matching

	Implementation
	Evaluation
	Evaluation process
	Discrete Fréchet distance

	Prototypes
	Core map matching implementation
	Off-road candidate scoring
	Kalman filter

	Results
	Test set characteristics
	Prototype results

	Discussion
	Conclusion
	Acronyms
	Glossary
	References
	Attachments
	Evaluation process diagram
	Discrete Fréchet distance pseudocode
	Additional test set visualizations
	Additional prototype result visualizations
	Evaluation application screenshots
	Core map matching pseudocode
	Kalman filter pseudocode

